Planning a Late Season NSR Voyage

James Bond | 1 Nov 2022

Late Oct / Early Nov 2021 on the NSR

HIGH NORTH NEWS The Barents Observer Politics Science Arctic Living Opinions Newsletter Fight Censorship! 中安 РУССКИЙ Search Early Winter Freeze Traps Ships in Arctic Ice, Highlighting Weak Safety Regime Ice problems for vessels in Northern sca Route sees blame.shifting POLITICAL RISK, CREDIT & FINANCE Insurance Marine News critical situation might be in the making the Northern Sea Route 1280 VESSER Including the Nordic NulwyJak (INO 9684960), Colden 3 14 (INO 9684978), Colden Peak (INO 9470375), UNL Fusion (INO 97) 14 (INO 9684978), Colden Peak (INO 9470376), UNL Fusion (Included on the control of the sub-transfer electronic in a reduct in the control of the sub-transfer electronic in a reduct in the control of the sub-**Tua** (INIO 9884978), **Golden Pear**((IMIO 9470375), **UHL Fusion (INI**O 9782 (IMIO 9884978), **Golden Pear**((IMIO 9470375), **UHL Fusion (IN**IO 9782 (Imough soliditying ice, looked to be continuing this week, about with difference Sudden Freeze-Up Disrupts Supply Chain on Russia's e in General > Stuck in ice s Illustration photo by Rosatom 9438614), Nordic Oinni Vaygach Kumpula (IMO 9590802) th Two icebreakers are on the way to rescue ice-locked ships on Northern Sea Route Stuck in ice ships scattered along Simp weraine sawn, inners in non-anno i est to pick up three dry cargo ships and one Northern Sea Route ral by Mikhail Vo is reading nontwest to pick up mee on cargo and . Which are stuck in ce while traveling westbound . But some or the vessels will have to wait for at least one week before they are Which are stuck in Ice While traveling westbound. In sci its caravan, and the other four ships that are stuck. released from captivity in the remote Arctic sea-ice. Nov 5: Cargo ships are scattered all along Northern Sea Route, most of them awaiting icebreaker to be taken through ice. Icebreaker VAYGACH is presently at Pevek Port, bulk carriers NORDIC OINNGUA, GOLDEN PEARL gen cargo UHL FUSION are led by nuclear icebreaker POOLGRACHT UHL FAIT TAYMYR, all three transiting NSR from Europe to Far ala escorted through the East Siberian Sea. Photo: ESL Shipping East Bulk carriers NORDIC NULUUIAAK and GOLDEN SUEK stuck in ice, waiting for icebreaker. Gen cargo NORDIC NULUUJAA Arctic shippers eye release from Russian GOLDEN SUEK POOLGRACHT, UHL FAITH, UHL FLASH stuck in ice, waiting for icebreaker, all three transiting from China to ice captivity Northern Europe. About a dozen Russian cargo ships are VAYGACH in Pevek also positioned along NSR, either waiting for icebreaker The 15 shipe that for the last two weeks have been ice-locked in Russian Arctic or trying to find passages in ice floes. More or less waters see release coming as a second icebreaker makes its way into the East autonomous are newly built, highest ice-class, powerful Siberian Sea. LNG tankers, but let's not forget, that their operators had to turn to icebreakers too, last winter, after one of them was damaged while transiting NSR autonomously. **By Atle Staalesen** 3

The Barents Observer

Overview

• QUESTONS, QUESTIONS, QUESTIONS

- Who got "stuck"?
 - When? Where?
- What were the ice conditions?
- Was this foreseeable?
 - Was there a point when a different decision could have been made?
- Did the safety regime stumble, falter, or fail?

EXPLORATION OF ANSWERS

Is there data available that would / could have led to a different outcome?

"Stuck" Ships

 Press reported that some 20 vessel were stuck on the NSR in late fall of 2021, including this sample of bulkers

Name	Class Society	Dimensions	lce Class	Transit Direction	NSR Entry Date	NSR Exit Date	Duration (days)
Admiral Schmidt	ABS	250m LOA, 43.1m beam	PC6	West to East	27 Oct	10 Nov	15
Kumpula	DNV	197m LOA, 32.6m beam	1A	East to West	6 Nov	8 Dec	33
Nordic Nuluujaak	DNV	230m LOA, 38.0m beam	1A	West to East	24 Oct	20 Nov	28
Nordic Qinngua	DNV	230m LOA, 38.0m beam	1A	West to East	30 Oct	20 Nov	22
Golden Pearl	DNV	225m LOA, 32.2m beam	1C	East to West West to East	8 Oct 26 Oct - Murmansk	19 Oct – Murmansk 20 Nov	12 26
Golden Suek	DNV	225m LOA, 32.2m beam	1C	East to West West to East	28 Sep 18 Oct - Murmansk	10 Oct – Murmansk 20 Nov	14 34

- NSR Boundaries: East = Diomede Island and West = 50° Longitude
- Observations:
 - Golden Suek and Golden Pearl transits East to West ≈ 13 days
 - Stuck ships transits = 22-34 days

Where were the Sticking Points

• Who got held up (speed, <≈3 knots), Where and When

Name	Delay date(s)	Delay Duration	Location	Comment
Admiral Schmidt (PC6)	30 Oct 3/4 Nov 6/7 Nov	4 hrs 12 hrs 9 hrs	77.3, 101.5 (Strait Kara & Laptev Seas) 73.1, 162 (East Siberia Sea) 70.6, 169.5 (East Siberia Sea)	Transit: Baffinland to Asia (loaded 12-14 Oct) Decision date: <u>4 Oct</u> (south of Iceland)
Nordic Nuluujaak (1A)	30 Oct to 13 Nov	325 hrs	75.3, 155.6 (East Siberian Sea)	Transit: Baffinland to Asia (loaded 8-10 Oct) Decision date: <u>17 Oct</u> (south of Iceland)
Nordic Qinngua (1A)	31 Oct 7 Nov 9 - 13 Nov	13 hrs 7 hrs 120 hrs	77.0, 72.6 (Kara Sea) 76.0, 151.7 (Laptev / East Siberian Sea) 75.9, 158.5 (East Siberian Sea)	Transit: Baffinland to Asia (loaded 8-11 Oct) Decision date: <u>24 Oct</u> (north of Iceland).
Golden Pearl (1C)	30 – 31 Oct 1 -3 Nov 8 - 13 Nov	11 hrs 48 hrs 105 hrs	76.5, 97.5 (eastern Kara Sea) 77.4, 102.0 (Strait Kara & Laptev Seas) 75.9, 158.5 (East Siberian Sea)	Shanghai to Murmansk and back to Shanghai Loaded in Murmansk 19-25 Oct Decision Date: <u>25 Oct</u> (Murmansk)
Golden Suek (1C)	28 Oct to 1 Nov 2 - 13 Nov	100 hrs 270 hrs	76.2, 148.2 (Laptev / East Siberian Sea) 75.6, 159.5 (East Siberian Sea)	Shanghai to Murmansk and back to Shanghai Loaded in Murmansk 11-18 Oct Decision Date: <u>18 Oct</u> (Murmansk)

POLARIS

										RIO _{SHIP}	RIO _{SHIP} Ice classes PC1-PC7		Ice classes below PC 7	Color Code	
Risk evaluated based on <u>lce Class</u> & <u>ice regime</u> encountered											20 ≤ RIO				
Outcome is a <i>single value</i> Risk Index										10 ≤ RIO < 2	20 Normal o	peration	Normal operation		
$RIO = (C_{1} x R V_{1}) + (C_{2} x R V_{2}) + (C_{3} x R V_{3}) + (C_{4} x R V_{4})$															
- $C_1 \dots C_4$ concentrations of ice types within ice regime (mixture of												Operation subject to special consideration			
anterent ice types and ice free water)										-20 ≤ RIO < -	0 Operation subject to		Operation subject to		
$= 100^{-1} \times 100^{-1$									-30 ≤ RIO < -	special con 20	sideration	special consideration			
						Winter Risk \	/alues (RVs)						-		
Polar Ship Category	ICE CLASS	ICE FREE	NEW ICE	GREY ICE	GREY WHITE ICE	THIN FIRST YEAR 1ST STAGE	THIN FIRST YEAR 2ND STAGE	MEDIUM FIRST YEAR 1ST STAGE	MEDIUM FIRST YEAR 2ND STAGE	THICK FIRST YEAR	SECOND YEAR	light Multi year	HEAVY MULTI YEA	R	
			0-10 cm	10-15 cm	15-30 cm	30-50 cm	50-70 cm	70-95 cm	95-120 cm	120-200 cm	200-250 cm	250-300 cm	300+ cm		
	PC1	3	3	3	3	2	2	2	2	2	2	1	1		
	PC2 PC2	3		3	3	2	2	2	2	2	1	1	0		
A			Incl	62		2	2	2	2	2	1	0	-1		
		3	3	cased	Ria	\bigwedge^2	2	1	1	0	-1	-1	-2		
	PC6 m	3	2	2	WSK	2	1	1	0	-1	-2	-3	-3		
В	PC7 🛜	3	2	2	2	1	1	0	-1	-2	-3	-3	-3		
	IAA 🔒	3	2	2	2	2	1	0	-1	-2	-3	-4	-4		
с	AI SS	3	2	2	2	1	0	-1	-2	-3	-4	-5	-5		
		3	2	2	1	0	-1	-2	-3	-4	-5	-6 7	-6		
		3	1	0	-1	-1	-2	-3	-4	-5	-0 -7	-7	-8		
5 Planning a Late Season NSR Voyage															

ADMIRAL SCHMIDT (PC6)

NORDIC QINNGUA (1A)

GOLDEN PEARL (1C)

ABS-POLARIS RIOs for GoldenPearl 2021

Was this "Event" Foreseeable?

- Observations:
 - Golden Suek (1C) and Golden Pearl (1C) transits East to West ≈12 days
 - Stuck ships transits ≈ 20 to 25 days
 - Icebreaker escort arranged to transit through the East Siberian Sea (14/15 Nov)
- ABS POLARIS videos reveal
 - PC6 ship although making a near identical voyage to the 1A ships did not experience significant delay
 - Ships were operating in ice regimes beyond that intended under IMO POLARIS
 - Did the safety regime fail? Damage? Pollution incident? Human injury?
- Was this foreseeable? Did Voyage Planning Fail?
 - Historical ice data may show trends
 - Air temperature trends
 - Prediction models from Ice Services

Was this "Event" Foreseeable?

- Watch for "Decision Dates"
 - Admiral Schmidt 4 Oct
 - Golden Pearl 25 Oct
 - Golden Suek 18 Oct
 - Nordic Qinngua 24 Oct
 - Nordic Nuluujaak 17 Oct
- 2018 shows
 - "tongue" in East Siberian Sea significant 20-22 Oct
 - closure between Kara and Laptev Seas 26-28 Oct
- 2020 very open
- NSR is where sea ice extent change is most notable compared to long term median ice edge

Was this "Event" Foreseeable?

Images Courtesy "National Snow and Ice Data Center, Boulder Colorado

Polar Code Operational Assessment & Voyage Planning

- For Polar Code Operational Assessments:
 - Review historical ice data
 - Review air temperature data
- Voyage planning is required
- Requirement to receive ice information on a regular basis when in Polar waters
- Who is making the strategic chartering decisions? Are they well informed? Sufficiently knowledgeable? 2020 was good, "let's do it again!"
- Operational decisions (tactical) responsibility of the Master

ABS POLARIS – Historical Data

- For Polar Code Operation Assessments:
 - Typically use latest five years of data, conservatively averaged
- Decisions dates around 20 Oct
 - PC6 should anticipate ice along route but shouldn't be a significant challenge
 - 1A should anticipate presence of challenging ice, route through likely
 - 1C should anticipate presence of very significant ice, arrange icebreaker escort

ABS POLARIS – Historical Data (1C Focus)

• Decision dates for the Murmansk to Shanghai leg were 18 and 25 Oct

ABS POLARIS – Historical Data (1C Focus)

But 2021 was worse than "typical" – Foreseeable?

- Leading indicator for sea ice to form is cold air temperatures
- On 20 Oct "Decision Day", 2021 temperature is indicating that sea ice will be growing very rapidly compared to recent years

Conclusions

- Voyage planning is a critical component of safe Polar Shipping
- Data is available to support decision making
- IMO POLARIS methodology appears sound
- Year on Year variability is significant, especially along the NSR
- Are chartering opportunities / decisions being made with the correct and sufficiently detailed information?
- Were some poor decision made? Likely
- Is the Safety Regime weak NO

Thank You

www.eagle.org

James Bond jbond@eagle.org

